Special Programs Administration 400 Seventh St., S.W. Washington, D.C. 20590 #### COMPETENT AUTHORITY CERTIFICATION FOR A FISSILE RADIOACTIVE MATERIALS PACKAGE DESIGN CERTIFICATE USA/9248/AF, REVISION 18 This certifies that the radioactive materials package design described below has been certified by the Competent Authority of the United States as meeting the regulatory requirements for a packaging for fissile radioactive materials as prescribed in the regulations of the International Atomic Energy Agency and the United States of America. - 1. Package Identification Framatome ANP Model Nos. SP-1, SP-2, SP-3. - 2. <u>Packaging Description and Authorized Radioactive Contents</u> as described in U.S. Nuclear Regulatory Commission Certificate of Compliance No. 9248, Revision 18 (attached). Shipment is authorized as Fissile Class II with a minimum criticality safety index of 0.4 or 1.0 (see NRC certificate) per package. #### 3. General Conditions - - a. Each user of this certificate must have in his possession a copy of this certificate and all documents necessary to properly prepare the package for transportation. The user shall prepare the package for shipment in accordance with the documentation and applicable regulations. - b. Each user of this certificate, other than the original petitioner, shall register his identity in writing to the Office of Hazardous Materials Technology, (DHM-23), Research and Special Programs Administration, U.S. Department of Transportation, Washington D.C. 20590-0001. - c. This certificate does not relieve any consignor or carrier from compliance with any requirement of the Government of any country through or into which the package is to be transported. - 4. Marking and Labeling The package shall bear the marking USA/9248/AF in addition to other required markings and labeling. - 5. Expiration Date This certificate expires on February 28, 2009. ^{1 &}quot;Safety Series No. 6, Regulations for the Safe Transport of Radioactive Materials, 1973 Revised Edition, as amended," published by the International Atomic Energy Agency (IAEA), Vienna, Austria. ² Title 49, Code of Federal Regulations, Parts 100 - 199, United States of America. ## CERTIFICATE USA/9248/AF, REVISION 18 This certificate is issued in accordance with paragraph 814 of the IAEA Regulations and Section 173.471 of Title 49 of the Code of Federal Regulations, in response to the petition and information dated December 23, 2003 submitted by Framatome ANP, Richland, WA, and in consideration of other information on file in this Office. | Certified by | FEB -9 2004 | |-----------------------------|-------------| | Robert A. McGwire | (DATE) | | Associate Administrator for | | | Hazardous Materials Safety | | Revision 18 - issued to endorse U.S. Nuclear Regulatory Commission Certificate of Compliance No. 9248, Revision 18, and to extend the expiration date. | NRC FORM 818 U.S. NUCLEAR REGULATORY COMMISSION (8-2000) 10 CFR 71 CERTIFICATE OF COMPLIANCE FOR RADIOACTIVE MATERIAL PACKAGES | | | | | | | | |--|-------------|--------------------|--------------------------|--|-----------|----|-------| | 1, s. CERTIFICATE NUM! | 9ER
9248 | b. REVISION NUMBER | c. DOCKET NUMBER 71-9248 | d. PACKAGE IDENTIFICATION NUMBER USA/9248/AF | PAGE
1 | OF | PAGES | #### 2. PREAMBLE - a. This certificate is issued to certify that the package (packaging and contents) described in Item 5 below meets the applicable safety standards set forth in Title 10, Code of Federal Regulations, Part 71, "Packaging and Transportation of Radioactive Material." - b. This certificate does not relieve the consignor from compliance with any requirement of the regulations of the U.S. Department of Transportation or other applicable regulatory agencies, including the government of any country through or into which the package will be transported. - 3. THIS CERTIFICATE IS ISSUED ON THE BASIS OF A SAFETY ANALYSIS REPORT OF THE PACKAGE DESIGN OR APPLICATION - a. ISSUED TO (Name and Address) Framatome ANP, Inc. 2101 Horn Rapids Road Richland, WA 99352-0130 TITLE AND IDENTIFICATION OF REPORT OR APPLICATION Framatome ANP, Inc. application dated September 5, 2003, as supplemented. #### 4. CONDITIONS This certificate is conditional upon fulfilling the requirements of 10 CFR Part 71, as applicable, and the conditions specified below. 5. ## (a) Packaging - (1) Model Nos.: SP-1, SP-2, and SP-3 - (2) Description Fuel assembly and fuel rod shipping containers. The packages consist of a right rectangular metal inner container and a wooden outer container, with cushioning material between the inner and outer containers. The metal inner container is approximately 11-1/2 inches by 18 inches by 179-1/2 inches long and is positioned within a wooden outer container approximately 30 inches by 31 inches by 207 inches long. The SP-1 and SP-2 packagings differ in the length of the metal inner container and end piece. The SP-3 packagings have a reduced spacing between the fuel assembly channels and the outer surface of the metal inner container. Cushioning is provided between the inner and outer containers by phenolic impregnated honeycomb and ethafoam, or equivalent. Closure of the metal inner container and the wooden outer container is accomplished by bolts. A pressure relief (breather) valve is provided on the inner container, and is set for 0.5 psi differential. The maximum weight of the packaging and contents is 2,800 pounds. ### (3) Drawings The packagings are fabricated and assembled in accordance with the following Framatome ANP, Inc., and Siemens Nuclear Power Corporation/Advanced Nuclear Fuels Corporation Drawing Nos.: EMF-304,416, Rev. 14. EMF-306,272, Rev. 10. EMF-309,141, Rev. 1. | NRC FORM 618 U.S. NUCLEAR REGULATORY COMMISSION (6-2000) 10 CFR 71 CERTIFICATE OF COMPLIANCE FOR RADIOACTIVE MATERIAL PACKAGES | | | | | | | | |--|--------------------|------------------|----------------------------------|------|----|-------|--| | 1. s. CERTIFICATE NUMBER | b. REVISION NUMBER | c. DOCKET NUMBER | d. PACKAGE IDENTIFICATION NUMBER | PAGE | | PAGE8 | | | 9248 | 18 | 71-9248 | USA/9248/AF | 2 | OF | 6 | | ## 5.(a) (4) Product Containers - (i) Five-inch, Schedule 40, stainless steel pipe fitted with screw type or flange closure. The product container shall be vented if it contains materials which decompose at less than 1475 °F. - (ii) Rod shipping container as shown on Siemens Power Corporation Drawing No. EMF-309,141, Rev. 1. #### (b) Contents ## (1) Type and form of material - (i) UO₂ fuel assemblies in a 7 x 7, an 8 x 8, or a 9 x 9 square array with a maximum fuel cross-section area of 25 square inches, maximum fuel length of 174 inches and maximum average enrichment of 3.3 w/o U-235. Minimum zircaloy clad thickness is 0.025 inches; maximum pellet diameter is 0.555 inches. Any number of water rods in any arrangement is permitted. - (ii) UO₂ fuel assemblies in a 7 x 7, an 8 x 8, or a 9 x 9 square array with a maximum fuel length of 174 inches, and a maximum average enrichment between 3.3 to 4.0 w/o U-235. The maximum pellet diameter is 0.555 inch, and the minimum clad thickness is 0.025 inch. Any number of water rods in any arrangement is permitted, including part length rods. Each assembly contains at least 4 rods with nominal 2 weight percent Gd₂O₃, which are in non-perimeter locations and are symmetric about the diagonal. - (iii) UO₂ fuel assemblies with a maximum U-235 enrichment of 5.0 percent by weight, and a maximum average U-235 enrichment of 4.0 percent by weight. Each fuel assembly is made up of fuel rods in a 10 x 10 square array, with a maximum fuel cross section of 5.022 inches square, a nominal pitch of 0.511 inch, and a maximum fuel length of 174 inches. The maximum pellet diameter is 0.3356 inch, the minimum clad thickness is 0.0225 inch, and the maximum U-235 enrichment in any edge rod is 4.0 percent by weight. Each assembly contains at least 6 rods with nominal 2 weight percent Gd₂O₃, which are symmetric about the diagonal, and each assembly contains at least 4 water rods in the 4 central rod positions. - (iv) UO₂ fuel rods with a maximum U-235 enrichment of 5.0 percent by weight, and a minimum Gd₂O₃ content of 1.0 percent by weight. The rods may be clad with zircaloy, steel or aluminum. The rods have a maximum fuel pellet diameter of 0.5 inch, and a maximum fuel length of 169 inches. | NRC FORM 618 U.S. NUCLEAR REGULATORY COMMISSION (8-2000) 10 CFR 71 CERTIFICATE OF COMPLIANCE FOR RADIOACTIVE MATERIAL PACKAGES | | | | | | | | |--|--------------------|------------------|----------------------------------|------|----|-------|--| | 1. a. CERTIFICATE NUMBER | b. REVISION NUMBER | C. DOCKET NUMBER | 4. PACKAGE IDENTIFICATION NUMBER | PAGE | | PAGES | | | 9248 | 18 | 71-9248 | USA/9248/AF | 3 | OF | 6 | | # 5.(b) (1) Type and form of material (Continued) - (v) UO₂ fuel assemblies composed of fuel rods in a 10 x 10 square array, with a maximum fuel cross section of 5.0 inches square, and a maximum fuel length of 174 inches. The maximum U-235 enrichment is 5.0 weight percent, the maximum U-235 enrichment for all edge rods is 4.0 weight percent, and the maximum average enrichment, excluding perimeter rods and rods containing gadolinia (Gd₂O₃), is 4.0 weight percent U-235. The maximum pellet diameter is 0.35 inch, and the minimum clad thickness is 0.018 inch. Each assembly must have a water channel in the central 3 x 3 rod positions. Any number of additional water rods in any arrangement is permitted, including part length rods. Each assembly must include at least twelve rods with a minimum nominal content of 2.0 weight percent gadolinia (Gd₂O₃), in a pattern symmetric about one of the assembly diagonals. At least eight of the twelve gadolinia rods must be located in rows 2 and 9, and in columns 2 and 9 of the assembly. - (vi) UO₂ fuel assemblies composed of fuel rods in a 10 x 10 square array, with a maximum fuel cross section of 5.0 inches square, and a maximum fuel length of 174 inches. The maximum U-235 enrichment is 5.0 weight percent. The maximum pellet diameter is 0.35 inch, and the minimum clad thickness is 0.018 inch. Each assembly must have a water channel in the central 3 x 3 rod positions. Any number of additional water rods in any arrangement is permitted, including part length rods. Each assembly must include at least eight rods with a minimum nominal gadolinia (Gd₂O₃) content of 2.0 weight percent in all axial regions with enriched pellets. Additional gadolinia rod specifications are included in supplement dated April 30, 1996. - (vii) UO₂ fuel assemblies composed of fuel rods in a 9 x 9 square array, with a maximum fuel cross section of 5.0 inches square, and a maximum fuel length of 174 inches. The maximum U-235 enrichment is 5.0 weight percent. The maximum pellet diameter is 0.40 inch, and the minimum clad thickness is 0.015 inch. Each assembly must have a water channel in the central 3 x 3 rod positions. Any number of additional water rods in any arrangement is permitted, including part length rods. Each assembly must include at least eight rods with a minimum nominal gadolinia (Gd₂O₃) content of 2.0 weight percent in all axial regions with enriched pellets. Additional gadolinia rod specifications are included in supplement dated April 30, 1996. - (viii) UO₂ fuel assemblies composed of fuel rods in a 9 x 9 square array, with a maximum fuel cross-section of 25 square inches, a maximum fuel length of 174 inches, and a maximum average uranium enrichment of 4.0 weight percent U-235. The nominal pellet diameter is 0.370 inch. At least the center 3 x 3 rod locations must be a water channel. Each assembly must include at least eight rods with a minimum nominal gadolinia (Gd₂O₃) content of 2.0 weight percent in all axial regions with enriched pellets. The eight gadolinia rod locations are shown in Figure 1 of the supplement dated July 27, 1999. | NRC FORM 618 U.S. NUCLEAR REGULATORY COMMISSION (8-2000) 10 CFR 71 CERTIFICATE OF COMPLIANCE FOR RADIOACTIVE MATERIAL PACKAGES | | | | | | | | |--|-------------------------|--------------------|-----------------|----------------------------------|------|----|-------| | T | . a. CERTIFICATE NUMBER | b. REVISION NUMBER | E DOCKET NUMBER | d. PACKAGE IDENTIFICATION NUMBER | PAGE | | PAGES | | | 9248 | 18 | 71-9248 | U\$A/9248/AF | 4 | OF | 6 | # 5.(b) (1) Type and form of material (Continued) - (ix) UO, fuel assemblies composed of fuel rods in a 10 x 10 square array, with a maximum fuel cross section of 5.0 inches square, and a maximum fuel length of 174 inches. The maximum U-235 enrichment is 5.0 weight percent, the maximum U-235 enrichment for all edge rods is 4.75 weight percent, the maximum U-235 enrichment for the four (4) corner edge rods is 3.05 weight percent, and the maximum U-235 enrichment for the eight (8) edge rods immediately adjacent to the four corner edge rods is 3.55 weight percent. The pellet diameter is between 0.30 and 0.3957 inch. Each assembly must have a water channel in a central 3 x 3 position. Any number of additional water rods in any arrangement is permitted, including part length rods. Each assembly must include at least ten rods with a minimum nominal content of 2.0 weight percent gadolinia (Gd₂O₃) in all axial regions with the enriched pellets, and in a pattern symmetric about one of the assembly diagonals. At least ten gadolinia rods must be located in rows 2 and 9, and in columns 2 and 9 of the assembly and cannot be immediately adjacent to another one of the ten gadolinia rods; however, diagonally adjacent is permitted. An additional upper tie plate (UTP) shipping shim may be added between the UTP and the fueled region. This UTP shim may consist of a maximum of 345 g plastic or plastic composite. - (x) UO₂ fuel assemblies composed of fuel rods in a 10 x 10 square array, with a maximum fuel cross section of 5.0 inches square and a maximum fuel length of 174 inches. The maximum uranium enrichment is 2.3 weight percent U-235. The pellet diameter is between 0.30 and 0.3957 inch. Each assembly must have a water channel in a central 3 x 3 position. Any number of additional water rods in any arrangement is permitted, including part length rods. An additional upper tie plate (UTP) shipping shim may be added between the UTP and the fueled region. This UTP shim may consist of a maximum of 345 grams plastic or plastic composite. - (2) Maximum quantity of material per package Total weight of contents (fuel assemblies, or fuel rods and rod shipping containers) not to exceed 1265 pounds. Total quantity of radioactive material within a package may not exceed a Type A quantity. (i) For the contents described in 5(b)(1)(i), 5(b)(1)(ii), 5(b)(1)(iii), 5(b)(1)(v), 5(b)(1)(vi), 5(b)(1)(vii), 5(b)(1)(vii), 5(b)(1)(ix), and 5(b)(1)(x): Two full length fuel assemblies. Two short fuel assemblies may be substituted for each full length fuel assembly provided the two short assemblies are shipped end-to-end and the total fuel length does not exceed 174 inches. (ii) For the contents described in 5(b)(1)(iv): Two product containers specified in 5.(a)(4). Each product container may contain any number of loose fuel rods. | NRC FORM 618 U.S. NUCLEAR REGULATORY COMMISSION (6-2000) 10 CFR 71 CERTIFICATE OF COMPLIANCE FOR RADIOACTIVE MATERIAL PACKAGES | | | | | | | | |--|--------------------|------------------|----------------------------------|------|----|-------|--| | 1. 9. CERTIFICATE NUMBER | D. REVISION NUMBER | c. DOCKET NUMBER | d. PACKAGE IDENTIFICATION NUMBER | PAGE | | PAGES | | | 9248 | 18 | 71-9248 | USA/9248/AF | 5 | OF | 6 | | 5.(c) Transport Index for Criticality Control (Criticality Safety Index) Minimum transport index to be shown on label for nuclear criticality control: (1) For contents described in 5(b)(1)(i), 5(b)(1)(ii), 5(b)(1)(iii), 5(b)(1)(iv), and 5(b)(1)(viii), and limited in 5(b)(2)(i) and 5(b)(2)(ii): 0.4 (2) For contents described in 5(b)(1)(v), 5(b)(1)(vi), 5(b)(1)(vii), 5(b)(1)(ix), 5(b)(1)(x), and limited in 5(b)(2)(i): 1.0 - 6. Each fuel assembly must be unsheathed or must be enclosed in an unsealed, polyethylene sheath which may not extend beyond the ends of the fuel assembly. The ends of the sheath may not be folded or taped in any manner that would prevent the flow of liquids into or out of the sheathed fuel assembly. - 7. Polyethylene shipping shims may be inserted between rods within fuel assemblies as follows: - (a) For contents described in 5(b)(1)(i) and 5(b)(1)(ii), up to a maximum of 0.20 gram H₂O hydrogen equivalent per cubic centimeter averaged over the assembly. - (b) For contents described in 5(b)(1)(v), up to a maximum of 0.25 gram H₂O hydrogen equivalent per cubic centimeter averaged over the assembly. - (c) For contents described in 5(b)(1)(viii), up to a maximum volume fraction of 0.13 averaged over the void volume of the assembly. - (d) For contents described in 5(b)(1)(iii), 5(b)(1)(vi), and 5(b)(1)(vii), polyethylene shipping shims are not permitted. - (e) For contents described in 5(b)(1)(ix) and 5(b)(1)(x), up to a maximum volume fraction of 0.14 averaged over the void volume of the assembly. - 8. Only contents described in 5(b)(1)(viii) and 5(b)(1)(ix) are authorized for transport in Model No. SP-3 packages. - 9. Maximum average enrichment means the highest average enrichment through any cross sectional plane of the assembly. | NRC FORM 618 U.S. NUCLEAR REGULATORY COMMISSION (8-2000) 10 CFR 71 CERTIFICATE OF COMPLIANCE FOR RADIOACTIVE MATERIAL PACKAGES | | | | | | | | |--|--------------------|-----------------|----------------------------------|------|----|-------|--| | 1. 8. CERTIFICATE NUMBER | b. REVISION NUMBER | C DOCKET NUMBER | d. PACKAGE IDENTIFICATION NUMBER | PAGE | | PAGES | | | 9248 | 18 | 71-9248 | USA/9248/AF | 6 | OF | 6 | | - 10. In addition to the requirements of Subpart G of 10 CFR Part 71: - (a) The package must be prepared for shipment and operated in accordance with the Operating Procedures in Chapter 7 of the application dated September 5, 2003. - (b) Each packaging must be acceptance tested and maintained in accordance with the Acceptance Tests and Maintenance Program in Chapter 8 of the application dated September 5, 2003. - 11. The package authorized by this certificate is hereby authorized for use under the general license provisions of 10 CFR §71.12. - 12. Expiration date: February 28, 2009. ## **REFERENCES** Framatome ANP, Inc., application dated September 5, 2003. Supplements dated: September 24 and November 6, 2003. FOR THE U.S. NUCLEAR REGULATORY COMMISSION John D. Monninger, Chief Licensing Section Spent Fuel Project Office Office of Nuclear Material Safety and Safeguards Date December 19 2003